Kubernetes v1.16
alpha
사용자는 토폴로지 분배 제약 조건 을 사용해서 지역, 영역, 노드 그리고 기타 사용자-정의 토폴로지 도메인과 같이 장애-도메인으로 설정된 클러스터에 걸쳐 파드가 분산되는 방식을 제어할 수 있다. 이를 통해 고가용성뿐만 아니라, 효율적인 리소스 활용의 목적을 이루는 데 도움이 된다.
EvenPodsSpread
기능 게이트의 활성화가 되었는지 확인한다(기본적으로 1.16에서는
비활성화되어있다). 기능 게이트의 활성화에 대한 설명은 기능 게이트
를 참조한다. API 서버쿠버네티스 API를 제공하는 컨트롤 플레인 컴포넌트.
와
스케줄러노드가 배정되지 않은 새로 생성된 파드를 감지하고, 실행할 노드를 선택하는 컨트롤 플레인 컴포넌트.
에
대해 EvenPodsSpread
기능 게이트가 활성화되어야 한다.
토폴로지 분배 제약 조건은 노드 레이블을 의지해서 각 노드가 속한 토폴로지 도메인(들)을 인식한다. 예를 들어, 노드에 다음과 같은 레이블을 가지고 있을 수 있다. node=node1,zone=us-east-1a,region=us-east-1
다음 레이블이 있고, 4개 노드를 가지는 클러스터가 있다고 가정한다.
NAME STATUS ROLES AGE VERSION LABELS
node1 Ready <none> 4m26s v1.16.0 node=node1,zone=zoneA
node2 Ready <none> 3m58s v1.16.0 node=node2,zone=zoneA
node3 Ready <none> 3m17s v1.16.0 node=node3,zone=zoneB
node4 Ready <none> 2m43s v1.16.0 node=node4,zone=zoneB
그러면 클러스터는 논리적으로 다음과 같이 보이게 된다.
+---------------+---------------+
| zoneA | zoneB |
+-------+-------+-------+-------+
| node1 | node2 | node3 | node4 |
+-------+-------+-------+-------+
레이블을 수동으로 적용하는 대신에, 사용자는 대부분의 클러스터에서 자동으로 생성되고 채워지는 잘-알려진 레이블을 재사용할 수 있다.
pod.spec.topologySpreadConstraints
필드는 1.16에서 다음과 같이 도입되었다.
apiVersion: v1
kind: Pod
metadata:
name: mypod
spec:
topologySpreadConstraints:
- maxSkew: <integer>
topologyKey: <string>
whenUnsatisfiable: <string>
labelSelector: <object>
사용자는 하나 또는 다중 topologySpreadConstraint
를 정의해서 kube-scheduler 에게 클러스터에 걸쳐 있는 기존 파드와 시작하는 각각의 파드와 연관하여 배치하는 방법을 명령할 수 있다. 필드는 다음과 같다.
DoNotSchedule
(기본값)은 스케줄러에 스케줄을 하지 말라고 알려준다.ScheduleAnyway
는 스케줄러에게 차이(skew)를 최소화하는 노드에 높은 우선순위를 부여하면서, 스케줄을 계속하도록 지시한다.사용자는 kubectl explain Pod.spec.topologySpreadConstraints
를 실행해서 이 필드에 대한 자세한 내용을 알 수 있다.
4개 노드를 가지는 클러스터에 foo:bar
가 레이블된 3개의 파드가 node1, node2 그리고 node3에 각각 위치한다고 가정한다(P
는 파드를 나타낸다).
+---------------+---------------+
| zoneA | zoneB |
+-------+-------+-------+-------+
| node1 | node2 | node3 | node4 |
+-------+-------+-------+-------+
| P | P | P | |
+-------+-------+-------+-------+
신규 파드가 기존 파드와 함께 영역에 걸쳐서 균등하게 분배되도록 하려면, 스펙(spec)은 다음과 같이 주어질 수 있다.
pods/topology-spread-constraints/one-constraint.yaml
|
---|
|
topologyKey: zone
는 “zone:whenUnsatisfiable: DoNotSchedule
은 만약 들어오는 파드가 제약 조건을 만족시키지 못하면 스케줄러에게 pending 상태를 유지하도록 지시한다.
만약 스케줄러가 이 신규 파드를 “zoneA”에 배치하면 파드 분포는 [3, 1]이 되며, 따라서 실제 차이(skew)는 2 (3 - 1)가 되어 maxSkew: 1
를 위반하게 된다. 이 예시에서는 들어오는 파드는 오직 “zoneB”에만 배치할 수 있다.
+---------------+---------------+ +---------------+---------------+
| zoneA | zoneB | | zoneA | zoneB |
+-------+-------+-------+-------+ +-------+-------+-------+-------+
| node1 | node2 | node3 | node4 | OR | node1 | node2 | node3 | node4 |
+-------+-------+-------+-------+ +-------+-------+-------+-------+
| P | P | P | P | | P | P | P P | |
+-------+-------+-------+-------+ +-------+-------+-------+-------+
사용자는 파드 스펙을 조정해서 다음과 같은 다양한 요구사항을 충족할 수 있다.
maxSkew
를 “2” 보다 큰 값으로 변경해서 들어오는 파드들이 “zoneA”에도 배치할 수 있도록 한다.topologyKey
를 “node”로 변경해서 파드가 영역이 아닌, 노드에 걸쳐 고르게 분산할 수 있게 한다. 위의 예시에서 만약 maxSkew
가 “1”로 유지되면 들어오는 파드는 오직 “node4”에만 배치할 수 있다.whenUnsatisfiable: DoNotSchedule
에서 whenUnsatisfiable: ScheduleAnyway
로 변경하면 들어오는 파드는 항상 다른 스케줄링 API를 충족한다는 가정하에 스케줄할 수 있도록 보장한다. 그러나 일치하는 파드가 적은 토폴로지 도메인에 배치되는 것이 좋다. (이 선호도는 리소스 사용 비율 등과 같은 다른 내부 스케줄링 우선순위와 공동으로 정규화 된다는 것을 알아두자.)4개 노드를 가지는 클러스터에 foo:bar
가 레이블된 3개의 파드가 node1, node2 그리고 node3에 각각 위치한다고 가정한다(P
는 파드를 나타낸다).
+---------------+---------------+
| zoneA | zoneB |
+-------+-------+-------+-------+
| node1 | node2 | node3 | node4 |
+-------+-------+-------+-------+
| P | P | P | |
+-------+-------+-------+-------+
사용자는 2개의 TopologySpreadConstraints를 사용해서 영역과 노드에 파드를 분배하는 것을 제어할 수 있다.
pods/topology-spread-constraints/two-constraints.yaml
|
---|
|
이 경우에는, 첫번째 제약 조건에 부합시키려면, 신규 파드는 오직 “zoneB”에만 배치할 수 있다. 두 번째 제약 조건에서는 신규 파드는 오직 “node4”에만 배치할 수 있다. 그런 다음 두 가지 제약 조건의 결과는 AND 가 되므로, 실행 가능한 유일한 옵션은 “node4”에 배치하는 것이다.
다중 제약 조건은 충돌로 이어질 수 있다. 3개의 노드를 가지는 클러스터 하나가 2개의 영역에 걸쳐 있다고 가정한다.
+---------------+-------+
| zoneA | zoneB |
+-------+-------+-------+
| node1 | node2 | node3 |
+-------+-------+-------+
| P P | P | P P |
+-------+-------+-------+
만약 사용자가 “two-constraints.yaml” 을 이 클러스터에 적용하면, “mypod”가 Pending
상태로 유지되는 것을 알게 된다. 이러한 이유는, 첫 번째 제약 조건을 충족하기 위해 “mypod”는 오직 “zoneB”에만 놓을 수 있다. 두 번째 제약 조건에서는 “mypod”는 오직 “node2”에만 놓을 수 있다. 그러면 “zoneB”와 “node2”의 공동 결과는 아무것도 반환되지 않는다.
이 상황을 극복하기 위해서는 사용자가 maxSkew
의 증가 또는 whenUnsatisfiable: ScheduleAnyway
를 사용하도록 제약 조건 중 하나를 수정할 수 있다.
여기에 주목할만한 몇 가지 암묵적인 규칙이 있다.
신규 파드와 같은 네임스페이스를 갖는 파드만이 매칭의 후보가 된다.
topologySpreadConstraints[*].topologyKey
가 없는 노드는 무시된다. 이것은 다음을 의미한다.
{zone-typo: zoneC}
를 가지는 “node5”가 클러스터에 편입한다고 가정하면, 레이블 키에 “zone”이 없기 때문에 무시하게 된다.들어오는 파드의 topologySpreadConstraints[*].labelSelector
와 자체 레이블과 일치하지 않을 경우 어떻게 되는지 알고 있어야 한다. 위의 예시에서, 만약 들어오는 파드의 레이블을 제거하더라도 여전히 제약 조건이 충족하기 때문에 “zoneB”에 배치할 수 있다. 그러나, 배치 이후에도 클러스터의 불균형 정도는 변경되지 않는다. - 여전히 zoneA는 {foo:bar} 레이블을 가지고 있는 2개의 파드를 가지고 있고, zoneB 도 {foo:bar}를 레이블로 가지는 파드 1개를 가지고 있다. 따라서 만약 예상과 다르면, 워크로드의 topologySpreadConstraints[*].labelSelector
가 자체 레이블과 일치하도록 하는 것을 권장한다.
만약 신규 파드에 spec.nodeSelector
또는 spec.affinity.nodeAffinity
가 정의되어 있으면, 일치하지 않는 노드는 무시하게 된다.
zoneA 에서 zoneC에 걸쳐있고, 5개의 노드를 가지는 클러스터가 있다고 가정한다.
+---------------+---------------+-------+
| zoneA | zoneB | zoneC |
+-------+-------+-------+-------+-------+
| node1 | node2 | node3 | node4 | node5 |
+-------+-------+-------+-------+-------+
| P | P | P | | |
+-------+-------+-------+-------+-------+
그리고 알다시피 “zoneC”는 제외해야 한다. 이 경우에, “mypod”가 “zoneC”가 아닌 “zoneB”에 배치되도록 yaml을 다음과 같이 구성할 수 있다. 마찬가지로 spec.nodeSelector
도 존중된다.
pods/topology-spread-constraints/one-constraint-with-nodeaffinity.yaml
|
---|
|
쿠버네티스에서 “어피니티(Affinity)“와 관련된 지침은 파드가 더 많이 채워지거나 더 많이 분산되는 방식으로 스케줄 되는 방법을 제어한다.
PodAffinity
는, 사용자가 자격이 충족되는 토폴로지 도메인에
원하는 수의 파드를 얼마든지 채울 수 있다.PodAntiAffinity
로는, 단일 토폴로지 도메인에
단 하나의 파드만 스케줄 될 수 있다.“EvenPodsSpread” 기능은 다양한 토폴로지 도메인에 파드를 균등하게 분배해서 고 가용성 또는 비용 절감을 달성할 수 있는 유연한 옵션을 제공한다. 또한 워크로드의 롤링 업데이트와 레플리카의 원활한 스케일링 아웃에 도움이 될 수 있다. 더 자세한 내용은 모티베이션(Motivation)를 참조한다.
1.16을 기준으로 이 기능은 알파(Alpha)이며, 몇 가지 알려진 제한사항이 있다.
Deployment
를 스케일링 다운하면 그 결과로 파드의 분포가 불균형이 될 수 있다.이 페이지가 도움이 되었나요?
피드백 감사합니다. 쿠버네티스 사용 방법에 대해서 구체적이고 답변 가능한 질문이 있다면, 다음 링크에서 질문하십시오. Stack Overflow. 원한다면 GitHub 리포지터리에 이슈를 열어서 문제 리포트 또는 개선 제안이 가능합니다..