コンセプト

Kubernetes v1.17 のドキュメントは積極的にメンテナンスされていません。現在表示されているバージョンはスナップショットです。最新のドキュメントはこちらです: 最新バージョン

Edit This Page

スケジューラーのパフォーマンスチューニング

FEATURE STATE: Kubernetes 1.14 beta
この機能は、現在 beta版 です。

  • バージョン名には beta がつきます(例:v2beta3)。
  • コードが十分にテストされているため、この機能は安全に有効化できます。デフォルトでも有効化されています。
  • 今後も継続して、この機能は包括的にサポートされる見通しですが、細かい部分が変更になる場合があります。
  • 今後のbeta版または安定版のリリースにおいては、オブジェクトのデータの形式や意味の両方あるいはいずれかについて、互換性のない変更が入る場合があります。その際は、次期バージョンへの移行手順も提供します。その移行にあたっては、APIオブジェクトの削除・改変・再作成が必要になる場合があります。特に改変には、多少の検討が必要になることがあります。また、それを適用する際には、この機能に依存するアプリケーションの一時停止が必要になる場合があります。
  • 今後のリリースにおいて互換性のない変更が入る可能性があります。そのため、業務用途外の検証としてのみ利用が推奨されています。ただし、個別にアップグレード可能な環境が複数ある場合は、この制限事項の限りではありません。
  • beta版の機能の積極的な試用とフィードバックにご協力をお願いします!一度beta版から安定版になると、それ以降は変更を加えることが困難になります。 

kube-schedulerはKubernetesのデフォルトのスケジューラーです。クラスター内のノード上にPodを割り当てる責務があります。

クラスター内に存在するノードで、Podのスケジューリング要求を満たすものはPodに対して割り当て可能 なノードと呼ばれます。スケジューラーはPodに対する割り当て可能なノードをみつけ、それらの割り当て可能なノードにスコアをつけます。その中から最も高いスコアのノードを選択し、Podに割り当てるためのいくつかの関数を実行します。スケジューラーはBinding と呼ばれる処理中において、APIサーバーに対して割り当てが決まったノードの情報を通知します。

このページでは、大規模のKubernetesクラスターにおけるパフォーマンス最適化のためのチューニングについて説明します。

スコア付けするノードの割合

Kubernetes 1.12以前では、Kube-schedulerがクラスター内の全てのノードに対して割り当て可能かをチェックし、実際に割り当て可能なノードのスコア付けをしていました。Kubernetes 1.12では新機能を追加し、ある数の割り当て可能なノードが見つかった時点で、割り当て可能なノードの探索を止めれるようになりました。これにより大規模なクラスターにおけるスケジューラーのパフォーマンスが向上しました。その数はクラスターのサイズの割合(%)として指定されます。この割合はpercentageOfNodesToScoreというオプションの設定項目によって指定可能です。この値の範囲は1から100までです。100より大きい値は100%として扱われます。0を指定したときは、この設定オプションを指定しないものとして扱われます。Kubernetes 1.14では、この値が指定されていないときは、スコア付けするノードの割合をクラスターのサイズに基づいて決定するためのメカニズムがあります。このメカニズムでは100ノードのクラスターに対しては50%の割合とするような線形な式を使用します。5000ノードのクラスターに対しては10%となります。自動で算出される割合の最低値は5%となります。言い換えると、クラスターの規模がどれだけ大きくても、ユーザーがこの値を5未満に設定しない限りスケジューラーは少なくても5%のクラスター内のノードをスコア付けすることになります。

percentageOfNodesToScoreの値を50%に設定する例は下記のとおりです。

apiVersion: kubescheduler.config.k8s.io/v1alpha1
kind: KubeSchedulerConfiguration
algorithmSource:
  provider: DefaultProvider

...

percentageOfNodesToScore: 50
備考: 割り当て可能なノードが50未満のクラスターにおいては、割り当て可能なノードの探索を止めるほどノードが多くないため、スケジューラーは全てのノードをチェックします。

この機能を無効にするためにはpercentageOfNodesToScoreを100に設定してください。

percentageOfNodesToScoreのチューニング

percentageOfNodesToScoreは1から100の間の範囲である必要があり、デフォルト値はクラスターのサイズに基づいて計算されます。また、クラスターのサイズの最小値は50ノードとハードコードされています。これは数百のノードを持つようなクラスターにおいてこの値を50より低い値に変更しても、スケジューラーが検出する割り当て可能なノードの数に大きな影響を与えないことを意味します。このオプションは意図的なものです。その理由としては、小規模のクラスターにおいてパフォーマンスを著しく改善する可能性が低いためです。1000ノードを超える大規模なクラスターでこの値を低く設定すると、パフォーマンスが著しく改善される可能性があります。

この値を設定する際に考慮するべき重要な注意事項として、割り当て可能ノードのチェック対象のノードが少ないと、一部のノードはPodの割り当てのためにスコアリングされなくなります。結果として、高いスコアをつけられる可能性のあるノードがスコアリングフェーズに渡されることがありません。これにより、Podの配置が理想的なものでなくなります。したがって、この値をかなり低い割合に設定すべきではありません。一般的な経験則として、この値を10未満に設定しないことです。スケジューラーのスループットがアプリケーションにとって致命的で、ノードのスコアリングが重要でないときのみ、この値を低く設定するべきです。言いかえると、割り当て可能な限り、Podは任意のノード上で稼働させるのが好ましいです。

クラスターが数百のノードを持つ場合やそれに満たない場合でも、この設定オプションのデフォルト値を低くするのを推奨しません。デフォルト値を低くしてもスケジューラーのパフォーマンスを大幅に改善することはありません。

スケジューラーはどのようにノードを探索するか

このセクションでは、この機能の内部の詳細を理解したい人向けになります。

クラスター内の全てのノードに対して平等にPodの割り当ての可能性を持たせるため、スケジューラーはラウンドロビン方式でノードを探索します。複数のノードの配列になっているイメージです。スケジューラーはその配列の先頭から探索を開始し、percentageOfNodesToScoreによって指定された数のノードを検出するまで、割り当て可能かどうかをチェックしていきます。次のPodでは、スケジューラーは前のPodの割り当て処理でチェックしたところから探索を再開します。

ノードが複数のゾーンに存在するとき、スケジューラーは様々なゾーンのノードを探索して、異なるゾーンのノードが割り当て可能かどうかのチェック対象になるようにします。例えば2つのゾーンに6つのノードがある場合を考えます。

Zone 1: Node 1, Node 2, Node 3, Node 4
Zone 2: Node 5, Node 6

スケジューラーは、下記の順番でノードの割り当て可能性を評価します。

Node 1, Node 5, Node 2, Node 6, Node 3, Node 4

全てのノードのチェックを終えたら、1番目のノードに戻ってチェックをします。

フィードバック